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Abstract 

We construct a Restricted Boltzmann Machine using the principle of maximum 

entropy and Shannon entropy as the cost function in the optimization problem. We 

demonstrate that the problem of optimization of entropy in RBM can be described 

as the Inverse Ising problem and that the optimal values of coefficients for the RBM 

are identical to the parameters in the Hamiltonian of the Ising model. We also show 

that real physical variables, such as magnetization and susceptibility, obtained using 

our RBM are in good correspondence to results from analytical or numerical 

methods. These results suggest that RBM neural networks using the principle of 

maximum entropy can be applied to modeling physical systems which can be 

described by discrete states, including fundamental quantum physics such as 

topological systems, and biological systems such as the correlated spiking of neurons. 

  



1. Introduction 

While neurons share the same characteristics and makeup as other cells of the body, 

their unique electrochemical aspect allows them to transmit signals through the body. 

Neuronal communication, therefore, is an electrochemical process that involves 

different transmitters responsible for different functions. Until recently, the nature of 

this transmission of signals remained elusive, with numerous theories, such as 

Hebbian theory, postulating that signal transmission is the result of increased 

synaptic efficacy that results from the persistent stimulation of the postsynaptic cells 

by the presynaptic cells. We attempt to resolve this question by suggesting the 

existence of a powerful connection between entropy maximisation and numerous 

other fields that include neuroscience, cognitive science, and machine learning, among 

others. With this understanding, we develop a maximum entropy quantum thermo-

dynamical model for both biological and artificial neural networks. 

 

 Small correlations among very many pairs of neurons could add up to a strong effect 

on the overall network. There are an infinite number of models that are consistent 

with a given set of pairwise correlations. We cannot experimentally measure all 

states, but we can measure averages and correlations. The conventional approach to 

describe the dynamics of a network we are studying is to make some assumptions 

about the network and then calculate the consequences of these assumptions. How-

ever, our assumptions may be wrong. In such complex systems as neural networks, 

it is best to try to remove all our assumptions and find models of the system which 

have as little structure as possible while still being able to reproduce some experi-

mental measurements. Such a minimally structured model is by definition the model 

with the maximum entropy [9, 16].  



These Maximum Entropy models have been used to describe how local interactions 

can generate collective dynamics in neural activity [19]. 

 

Ising models from physics are the maximum-entropy probability distributions that 

can exactly reproduce measured pairwise correlations between spins. There has been 

a long history of physicists exploring analogies between statistical mechanics of Ising 

models and the dynamics of neural networks [10-13].  It has been shown that this 

analogy can be turned into a precise mapping and connected to experimental data 

where the pairwise interactions Ising model provides a very accurate description of 

the patterns of neural firing (spiking and silence) in retinal ganglion cells despite the 

fact that it excludes all higher order interactions between multiple cells [9, 15, 16]. 

In this work, we develop a maximum-entropy model for neural networks using an 

Ising-type Hamiltonian in the quantum thermodynamics formalism. 

 

In recent years, one can notice a large number of investigations on the relations 

between neural-network (NN) algorithm descriptions and quantum thermodynamics 

(QTD) formalism. The key idea in such a correspondence is that we can put in 

compliance the description of entropy in the meaning of Shannon (so called infor-

mation entropy): 

𝑆! = −$𝑝" ln(𝑝")																																																																										(1)
"

 

where,  𝑝" has the meaning of the probability, and the Gibb’s entropy: 

𝑆 = −𝑘#$𝑝" ln(𝑝")																																																																												(2)
"

 

here, we have the discrete set of microstates with the energies 𝐸" and the probability 

𝑝" that the system is in each microstate i. The next very important relation was 



shown in [1], stating that the Gibbs Entropy is equal to the classical "heat engine" 

entropy characterized as: 

𝑑𝑆 =
𝑑𝑄
𝑑𝑇 																																																																																			(3) 

These well-known relations give the possibility to build model relations between dif-

ferent types of NN and quantum systems. As an example, we can provide the work 

of Deng et. al [2] where the authors use artificial neural networks to study some 

interesting phenomenon in quantum physics - the topological phases of matter. They 

described one-dimensional (1D) symmetry-protected topological cluster state and the 

2D and 3D toric code states with intrinsic topological orders using short-range neural 

networks in an exact and efficient fashion. We can relatively easily see the corre-

spondence between NN and quantum physics models in the 1D case. The next figure 

(Fig. 1) shows this relation. For the 1D cluster (Fig 1 (a)) we have the following 

Hamiltonian: 

𝐻 = −$𝜎$%&' 𝜎$(𝜎$)&'
*

$+&

																																																																(4) 

where, 𝜎' , 𝜎( – are Pauli matrices and N defines the size of the system. 

 

 

Fig  1. (Illustrations taken from [1]). 1D quantum cluster of ½ spins (a) and corre-

sponding neural network (b). 

The Hamiltonian (Eqn. 4) has boundary conditions and two symmetric transfor-

mations. Due to such nature, the ground state of the Hamiltonian |𝐺⟩	obeys: 

𝜎$%&' 𝜎$(𝜎$)&' |𝐺⟩ = |𝐺⟩																																																																(5) 



In the context of quantum information and computation, this state is called a cluster 

state or more generally a graph state. And for this cluster state the authors show how 

to construct an exact artificial neural network representation (Fig. 1(b)) with the 

following artificial-neural-network quantum state (ANNQS): 

Φ,(Ξ; Π) = $expB
𝑖𝜋
4	 	$ ℎ$(1 + 2𝜎$%&' + 3𝜎$( + 𝜎$)&' )

$
G																															(6)

{.!}

	 

Here, {ℎ$} = {−1,1}0 denotes the possible configurations of M hidden auxiliary spins 

and the weights Π = (a1, 𝑏$" ,𝑊$$
2 ) are parameters needed to train to best represent 

the many-body quantum state. 

 

Here, we reviewed one example of a correspondence between the NN and quantum 

physics models in detail but this work is not unique and we can see a number of 

similar papers where authors starting from NN and matching these with a physical 

model or vice-versa. For example we can mention the next work in this subject [3], 

where Ramacher conceived the NN as a system which can be derived from a partial 

differential equation of Hamilton-Jacobi type and described the neurons and weights 

as state variables of the dynamic system. Among others we can also admit the Luis 

M. Silva paper [4] where authors proposed neural network classification using as cost 

function Shannon's entropy of the error using the principle which minimizes error 

entropy in order to maximize the mutual information between the output and the 

desired target of a neural network. Or, we can also cite the paper [5] where they also 

used an entropy formalism but under the minimum description length principle.  

 

We can use the language of physics to describe some NN or (and this is more im-

portantly in our case) we can build the NN to study some physical model/phenomena 

(as it was done in the [2]). The main relation between these two cases is the entropy. 



The physical meaning of the Gibbs entropy derives from the thermodynamic poten-

tial function of the Grand canonical ensemble: 

Ω = 𝑘#𝑇𝑙𝑛 Q $ exp B−
𝐸345463
𝑘#𝑇

G
577	9":;<345463

R																																												(7) 

From the Grand canonical ensemble, we can write the entropy as the derivative: 

𝑆 = −
𝜕Ω
∂T 																																																																																		(8) 

 

2. Maximal Entropy Bose-Hubbard RBM Model for Neurons 

2.1 Model Formalism 

In accordance with previous works [8], a large system of interacting particles can be 

described by  

𝐻4<4 = 𝐻3=3X𝑥, 𝜆(𝑡)\ + 𝐻>54.(𝑦) + ℎ"?4(𝑥, 𝑦)																																										(9) 

where x  accounts for all the coordinate degrees of freedom for the N particles in the 

system, y does the same for the bath, and the Hamiltonian functions Hsys, Hbath, and 

hint define conservative interactions among the various position coordinates of system 

and bath. The function λ(t) plays the role of a time-varying external field that acts 

exclusively on the system and can do work on the coordinates x. hint is assumed to 

be small and may be ignored. This Hamiltonian has been used to model neural net-

works in past works [10, 11].  

  

To model the dynamics of firing neurons we propose the next model Hamiltonian: 

𝐻 = −𝐽 $ 𝛿"@𝑏")𝑏@ +$
𝑈
2
(𝑛" − 1)𝑛" −$𝜇𝑛" 																											(10)

""A",@C

 

where 𝑏") is an operator of appearance of the neuron (in model we can say that this 

is boson) on the state i,  𝐵" – operator of disappearance of the neuron on the state i,  

𝐽𝛿"@ – are tunneling coefficients (in our case we can say that this is the nearest-

neighbor hopping),  U – is the on-site interaction strength between two bosons, and 



the last term corresponds to the chemical potential (this is related to the contact 

with the “bath” of heat). 

 

Written in this way, the Hamiltonian is called the Bose-Hubbard model. Bose, be-

cause of Bose-Einstein statistics to describe the particles; Hubbard, because of the 

Hubbard-like term (𝑏")𝑏@) related to the strong correlation between particles. This 

model is widely used to describe the phase transition to the state of Bose-Einstein 

condensate in systems of ultracold bosons in optical lattice which occurs at some 

values of D
E
. In our case, the term with J describes the interactions due to neighboring 

firing neurons. The important portion in this term is the matrix formed by J and the 

Kronecker delta function 𝛿"@ which has the meaning of the network adjacency matrix 

A such that Aij=1 when we have a link between i and j cites and Aij=0 otherwise.  

 

Similar models have been used to describe the behavior of the system in depend of 

network topology [17] and for networks in machine learning [18]. But in both men-

tioned papers (as well as in [10]), the authors used quite simple Mean-Field Approx-

imation (MFA) while we will use the formalism of Hubbard operators which will 

allow us take into account the interaction between bosons in more reliable way than 

the MFA did. the X-operator transform the system from the state “m” to state “n” 

and can be written as: 

𝑋"?9 = |𝑛, 𝑖 >< 𝑚, 𝑖|																																																																			(11) 

Then, the operators of creation and annihilation of bosons in the X-operators ap-

proach are: 

𝑏" =$√𝑛 + 1
?

𝑋"
?,?)&,					𝑏") =$√𝑛 + 1

?

𝑋"
?)&,?																												(12) 

And the Hamiltonian (10) can reformulated as: 



𝐻 =$𝛼?𝑋"??

",?

− 𝐽$𝛿"@ Q$√𝑛 + 1
?

𝑋"
?)&,?RQ$√𝑛 + 1

?

𝑋@
?,?)&R

"@

												(13) 

Where,   

𝛼? =
𝑈
2	 𝑛

(𝑛 − 1) − 𝜇𝑛,																																																									(14) 

are single-site energies.  

 

 

 

 

 

One can write the equation (13) in the matrix form as: 

𝐻 =$𝐻"7544

"

 

where: 

𝐻"7544 =

⎝

⎜⎜
⎛

𝛼F −𝐽 0 0 …
−𝐽 𝛼& −√2𝐽 0 …
… −√2𝐽 𝛼G −√3𝐽 …
… … … … …
… . … . … −√𝑛𝐽 𝛼?⎠

⎟⎟
⎞
																																						(15) 

 

This is a symmetric tridiagonal matrix and can be diagonalized using standard nu-

merical methods. We will get the diagonal matrix: 

𝐻75442 = s

𝛽F 0 0 0
0 𝛽& 0 0
0 0 … 0
0 0 0 𝛽?

u																																																														(16) 

where the new functions 𝛽$ are functions of 𝛼$ and 𝐽. Using these 𝛽$ (we have to 

notice that they have a meaning of energy levels) we can use the known relation 

between entropy and grand canonical potential GCP (7), to define the GCP as: 



Ω = 𝑘>𝑇𝑙𝑛 Q$expB−
𝛽$
𝑘>𝑇

G
$

R																																																												(17) 

In general, we can take the derivative as: 

𝜕Ω
∂T = 𝑘>𝑙𝑛 Q$exp B−

𝛽$
𝑘>𝑇

G
$

R

+ 𝑘>𝑇
1

B∑ exp B− 𝛽$
𝑘>𝑇

G$ G
Q$exp B−

𝛽$
𝑘>𝑇

G
$

(
𝛽$
𝑘>𝑇G

)	R		(18) 

Relation (18) can be solved numerically using earlier obtained very important func-

tional relation 

𝛽$ = 𝐹(𝛼$%&, 𝛼$ , 𝛼$)&, 𝐽)																																																																								(19) 

In (19) we have the dependence only from α with indexes 𝑘 − 1, 𝑘, 𝑘 + 1 because in 

general, the resulting matrix (15) is tridiagonal. Let’s limit our discussion on known 

physics of Bose-Einstein systems, the so-called hard-core bosons approximation. For 

the case of the Bose-Hubbard model this means that we have only possible states 

with number of bosons on-site 𝑛# ≤ 1. Thus, for matrix (15) we will get using (14): 

𝐻"7544 = B𝛼F −𝐽
−𝐽 𝛼&

G = B 0 −𝐽
−𝐽 −𝜇G																																																																										(20) 

We can find by solving the quadratic equation for eigenvalues of 𝐻"7544: 

𝛽F = −
𝜇
2 −

y𝜇
G

4 + 𝐽G,			𝛽& = −
𝜇
2 +

y𝜇
G

4 + 𝐽G																																																		(21) 

Then, the GCP can be written as: 

Ω = 𝑘>𝑇𝑙𝑛 Bexp B−
𝛽F
𝑘>𝑇

G + exp B−
𝛽&
𝑘>𝑇

GG																																																(22) 

And entropy thus is: 



𝑆 = −
𝜕Ω
∂T = −z𝑘>𝑙𝑛 Bexp B−

𝛽F
𝑘>𝑇

G + exp B−
𝛽F
𝑘>𝑇

GG

+
1
𝑇

Bexp B− 𝛽F
𝑘>𝑇

G𝛽F + exp B−
𝛽&
𝑘>𝑇

G𝛽&G

exp B− 𝛽F
𝑘>𝑇

G + exp B− 𝛽F
𝑘>𝑇

G
{ 

We have derived the entropy function from model parameters as: 

𝑆 = Φ(T, µ, J)																																																																								(23) 

For maximal entropy we can take the derivatives of this function with respect to the 

model parameters to be equal zero (for example, HI
JK
= 0 if we want find critical tem-

perature) to find the behavior of the system with respect to criticality (for Bose-

Hubbard model this related to Mott Insulator (MI)-Superfluid (SF) phase transi-

tion). 

 

The following figure presents the dependence of entropy calculated for the case of 

hard-core boson approximation and using relation (23) as function of tunneling co-

efficient J. All variables are in units of energy (for this we use 𝑘#𝑇 → 	𝜃)) and  𝜃 = 1. 

 



Fig.1.    Entropy of hard-core bosons case of Bose-Hubbard model as function of 

tunneling  

coefficient J, for different values of chemical potential 

 

As one can see from Fig.1, the entropy has a maximum at the value J=0 for any 

value of chemical potential, but this result is for the hard-core version of Bose-Hub-

bard model. In the case when the number of bosons on-site can be more then 0 or 1, 

we will have one more important parameter U (related to the on-site interaction of 

bosons) and the behavior of entropy function will be more complicated.  

 

2.2 Constructing the RBM Neural Network 

Our neural network approach is based on the paper of Bausch and Leditzky [24] and 

will serve as a starting point for developing a NN which corresponds to the Bose-

Hubbard model described above. We first formulate an optimization problem for 

Absolutely Maximally Entangled (AME) for dimension d and number of qubits n. 

For example, for an AME(n,d) we need to define state |𝜓?,L >. 

This state is the decomposition with respect to a known basis {|𝑖 >}"+FL%& 

|𝜓?,L� =
1
𝐶$𝜓(𝑖?)|𝑖?⟩																																																												(24) 

where the function 𝜓(𝑖?)  is computed by the neural network and to encode these 

strings 𝑖? we can use different approaches (binary, scaled, one-hot). These basis 

strings {|𝑖 >}"+FL%& are what is named in the program as the spin-list  - i.e. some space 

of variables which we encoded to be used in the neural network. For example for 

binary encoding and AME(3,2) we will get the following spin list: 

0     0     0     0     1     1     1     1 



0     0     1     1     0     0     1     1 

0     1     0     1     0     1     0     1 

Here we have dn columns of binary coding of basis strings {|0>}, {|1>} and {|2>}. 

It is important to note that that basis functions (|𝑖 >)	as functions (|h>) are the 

visible and hidden units from Restricted Boltzmann Machine (RBM): 

𝐻M#0 =$𝑎7𝑖7 +$𝑏$ℎ$ +$𝑊$7𝑖$ℎ7
$A7

																																												(27) 

The values of a, b and W coefficient are the NN weights that define the NN “archi-

tecture”. The RBM Hamiltonian has the same form as our Bose-Hubbard Hamilto-

nian 

𝐻 = −𝐽 $ 𝛿"@𝑏")𝑏@ +$
𝑈
2
(𝑛" − 1)𝑛" −$𝜇𝑛" 																																		(28)		

""A",@C

 

therefore allowing the extension of the NN developed by Bausch and Leditzky to our 

model.  The wave functions for the RBM can be written in terms of AME states as 

|𝜓? >= $ 𝜓?(𝑖?)|𝑖?⟩
"#∈[F,&]#

																																																											(29) 

where 

|𝑖? >= |𝑖& >⊗ |𝑖G >⊗ |𝑖Q >⊗…. 

is the spin list. Then  

|𝜓M#0 >	= |𝜓? >= $ $
exp	(−𝐻(𝑖?, ℎ?))

𝑍 |𝑖?⟩																																			(30)
.#∈{F,&}"#∈[F,&]#

 

where Z is the partition function and equal to the sum of all possible combinations 



𝑍 =$exp	(−𝐻(𝑖?, ℎ?))
",.

																																																																(31) 

Using Eqn 30, we can formulate the optimization problem as follows. For a subset 𝑆 

of n states,   𝜌R = 𝑡𝑟R(|𝜓?⟩), the constraint on |𝜓?⟩	 to be being absolutely maximally 

entangled is related to the linear entropy 

𝑺𝑳 =
2?

2? − 1
(1 − 𝑡𝑟(𝜌RG))																																																														(32) 

 Then the average linear entropy is  

𝑄9(𝜓?⟩) = B
𝑛
𝑛/2G

%&
$𝑆T(	𝜌R)																																																		(33)
R

 

which is the main equation for optimization. We use the artificial bee colony, pattern 

search, and gradient search optimization approaches to optimize 𝑄9X𝜓?,L\ and gen-

erate the NN parameters and state functions 𝜓?which obey the maximum entropy 

condition. 

2.3 Analytical solution for Bose-Hubbard Model 

Suppose we have some lattice with defined geometry (in 3D cases this can be cubic, 
hexagonal etc., for 2D cases it can be quadratic, triangle, honeycomb…). 



 

Examples of 2D lattices, with 
circles representing sites, and 
dark lines denoting bonds.  
(a): square ( z = 4),  
 
(b): triangular ( z = 6),  
 
(c): honeycomb ( z = 3),  
 
(d): Voronoi ( z = 6),  
 
(e): cubic ( z = 6), and 
 
(f): Cayley tree with z = 3.  
 

 

The sites of this lattice are occupied by bosons where 𝑛" is the occupation number 
of site i. The Bose-Hubbard Hamiltonian is written as: 

𝐻 = − $ 𝑡"@𝑏")𝑏@ +$
𝑈
2
(𝑛" − 1)𝑛" −$𝜇𝑛" 																																										(1)

""A",@C

 

where 𝑏") is an operator of appearance of the boson i, 𝑏" is operator of disappearance 

of the boson, 𝑛" = 𝑏")𝑏" is the occupation number of site i,  𝑡"@ is the nearest-neighbor 

hopping amplitude, U is the on-site interaction strength between two bosons and the 

last term corresponds to the chemical potential.  For large enough interactions U, 

the ground state of the system will be a Mott insulating phase while it remains a 

supefluid for smaller interactions. This was shown in [25].  

 

Using the formalism of Hubbard operators, which will allow us take into account the 

interaction between bosons, the X-operator transforms the system from the state 

“m” to state “n” and can be written as: 

𝑋"?9 = 𝑛, 𝑖⟩⟨𝑚, 𝑖																																																																										(2) 



Then, the operators of creation and annihilation of bosons in the X-operators ap-

proach are: 

𝑏" =$√𝑛 + 1
?

𝑋"
?,?)&,					𝑏") =$√𝑛 + 1

?

𝑋"
?)&,?																																				(3) 

The Hamiltonian (1) can be re-written as 

𝐻 =$𝛼?𝑋"??

",?

−$𝑡"@
"@

𝑏")𝑏@ 																																																						(4) 

where,   

𝜀? =
𝑈
2	 𝑛

(𝑛 − 1) − 𝜇𝑛,																																																									(5) 

are single-site energies.  

 

Now we have to introduce the order parameter of the system. This is the average 

number of the creation and annihilation operators  

𝜑 = 〈𝑏"〉 = 〈𝑏")〉																																																																						(6) 

For the Mott insulator phase this parameter is equal to zero, while as soon as 𝜑 ≠ 0, 

this means that the system is in a Bose-Einstein condensate state. Using the mean-

field approximation for the hoping term as: 

𝑏")𝑏@ = 𝑏")〈𝑏"〉 + 〈𝑏")〉𝑏" − 〈𝑏")〉〈𝑏"〉 = (𝑏") + 𝑏")𝜑 − 𝜑G																												(7) 

 (4) can be rewritten as: 

𝐻 =$𝜀?𝑋"??

",?

− 𝜑𝑡F$(𝑏") + 𝑏")
"

− 𝑁𝑡F𝜑G																																											(8) 

Here we introduce the mean-field average for hopping: 

𝑡F =$𝑡"@
"@

 

Thus, the BH model Hamiltonian can be written (using (3)) as the sum of matrix 

(matrix with respect to Hubbard operators) and constant parts 

𝐻 =$𝐻U;𝑋"
U;

",U;

− 𝑁𝑡F𝜑G																																																											(9) 



where: 

𝐻�U; =

⎝

⎜⎜
⎛

𝜀F −𝑡F𝜑 0 0 …
−𝑡F𝜑 𝜀& −√2𝑡F𝜑 0 …
… −√2𝑡F𝜑 𝜀G −√3𝑡F𝜑 …
… … … … …
… . … . … −√𝑛𝑡F𝜑 𝜀?⎠

⎟⎟
⎞
																													(10) 

 

Hard-core bosons case 

For example, if we restrict ourselves to the hard-core bosons approximation, where 

only states with 0 or 1 possible numbers of bosons exist, we will get the following 

simple 2x2 matrix for 𝐻�U; 

𝐻�U; = �
𝜀F −𝑡F𝜑

−𝑡F𝜑 𝜀&
� = 	 B 0 −𝑡F𝜑

−𝑡F𝜑 −𝜇 G 

where we applied the single-site energies defined by (5). In the case when the inter-

actions are considered, but we restrict the maximum boson occupation number to 

𝑛# ≤ 2 we will have 

𝐻�U; = �
0 −𝑡F𝜑 0

−𝑡F𝜑 −𝜇 −√2𝑡F𝜑
0 −√2𝑡F𝜑 𝑈 − 2𝜇

� 

In both cases, we have to diagonalize this matrix by using some canonical matrix 

relations and the lower eigenvalue of diagonalized matrix will be the ground state 

energy. For the hard-core bosons model, this can be done analytically: 

𝐻�′U; = B 0 −𝑡F𝜑
−𝑡F𝜑 −𝜇 G →

⎝

⎜
⎜
⎛−

𝜇
2 −

y𝜇
G

4 + 𝑡FG𝜑G 0

0 −
𝜇
2
+ y

𝜇G

4
+ 𝑡FG𝜑G

⎠

⎟
⎟
⎞
														(11) 

where we used the following canonical transformation: 

𝑈V𝐻𝑈 = 𝐻2,						𝑈 = �𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 �,			sin(2𝛼) =

𝑡F𝜑

�𝜇
G

4 + 𝑡FG𝜑G	
																							 



In the relation (11) we have still one unknown: order parameter 𝜑. To find it we will 

use the grand-canonical potential and its derivative with respect to the order param-

eter.  Defining, 𝛽 = 1/𝑇	the partition function of model using the Hamiltonian (9) 

will be: 

𝑍 = 𝑆𝑝	𝑒%WX = 𝑆𝑝 exps−𝛽 �$𝐻U;𝑋"
U;

",U;

− 𝑁𝑡F𝜑G�u = exp(𝛽𝑁𝑡F𝜑G) 𝑍F*						(12) 

Where: 

𝑍F = 𝑒
%WY%ZG%

[Z
$

\ )4%
$]$^

+ 𝑒
%WY%ZG)

[Z
$

\ )4%
$]$^

																																													(13) 

Thus, the grand canonical potential is: 

Ω = −B
1
𝛽G 𝑙𝑛𝑍 = −𝑁𝑡F𝜑G −

𝑁
𝛽 ln�𝑒

%WY%ZG%
[Z

$

\ )4%
$]$^

+ 𝑒
%WY%ZG)

[Z
$

\ )4%
$]$^

�													(14) 

And, then : 

B
𝜕Ω
∂φG 	= −2𝑡F𝜑𝑁 −

𝑁
𝛽
1
𝑍F
𝜕𝑍F
𝜕𝜑 																																																			(15) 

So, our equation for order parameter we have as: 

−2𝑡F𝜑 −
1
𝑍F
𝜕𝑍F
𝜕𝜑

1
𝛽 		= 0																																																													(16) 

 

And, now: 

−2𝑡F𝜑 +$〈𝑋U2U2〉
U2

𝜕𝜀U2
𝜕𝜑 		= 0	,							〈𝑋U2U2〉 =

1
𝑍F
𝑒%W_&" 																											(17) 

 

Using: 

𝜕𝜀F2
𝜕𝜑 = −𝑡F sin(2𝛼) ,

𝜕𝜀&"
𝜕𝜑 = 𝑡F sin(2𝛼)																																		(18)	 

we can write the equation: 



𝜑 =
𝑡F𝜑
2
⎝

⎛〈𝑋
&2&2〉 − 〈𝑋F2F2〉

�𝜇
G

4 + 𝑡FG𝜑G ⎠

⎞																																																(19) 

So, finally, for the case of 𝜑 ≠ 0: 

2
𝑡F
=
〈𝑋&2&2〉 − 〈𝑋F2F2〉

�𝜇
G

4 + 𝑡FG𝜑G
																																																												(20) 

The equation (20) is the final equation with which we can numerically define the 

value of order parameter and use this value to find the ground state energy. 

 

 

Ground state energy for the case of hard-core bosons approximation 

 

We can find the quite simple solution of (20) for the case of 𝑇 = 0. For this condition 

we can state that for  〈𝑋&2&2〉 = 1, 〈𝑋F"F2〉 = 0, the equation is: 

2
𝑡F
=

1

�𝜇
G

4 + 𝑡FG𝜑G
, 𝑎𝑛𝑑	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛				𝜑 =

1
2
�1 − 𝜇G/𝑡FG																	(21) 

Then for (11) we will have: 

𝐻�′U; = s
−
𝜇
2
−
𝑡F
2

0

0 −
𝜇
2 +

𝑡F
2

u 

Therefore, for the case of hard-core bosons we get the following spectrum of the 

model for the state with 𝜑 ≠ 0	(SF phase) and for the state 𝜑 = 0 (Normal phase) 

𝐸&R` = −
𝜇
2 −

𝑡F
2 , 𝐸GR` = −

𝜇
2 +

𝑡F
2 ,											𝐸&

*a = 0,				𝐸G*a = −𝜇																																		(22) 

 

Also, the condition (21) gives the solution to when the SF phase exists  

𝜑 =
1
2
�1 − 𝜇G/𝑡FG 	≠ 0, 1 −

𝜇G

𝑡FG
> 0,			𝜇 ∈ (−𝑡F, 𝑡F)																																	(23)	 



For numerical evaluation, we can state the unit of energy as 𝑡F  i.e.  𝑡F = 1 and build 

the energy spectrum as a function of chemical potential. 

 

 

Figure.   Energy spectrum for both Normal (NO) and SF phases as function of 

chemical potential (Upper),  Corresponding value of order parameter (Lower). 

 

Note that energy levels for SF phase exist only in the range 𝜇 ∈ (−𝑡F, 𝑡F).  The ground 

state energy as function of chemical potential is marked with a filled line in the figure. 

We see that for small values of 𝜇 < 	−𝑡F/2,  the ground state energy is equal to zero 



which means that the ground state is the Normal state 𝐸&*a = 0	(state with 0 bosons 

on-site). For values of  𝜇 > 	 𝑡F,  the ground state energy is 𝐸G*a = −𝜇 (state with one 

boson on-site). For the intermediate values of chemical potential the ground state 

will be the state with energy 𝐸&R` = − Z
G
− 4%

G
 which appears as a result of level splitting 

of state 𝐸&*a	induced by the appearance of the BE- condensate in the system.  

Described above is the simple case of hard-core bosons and 𝑇 = 0	which is only case 

that can be described analytically. For the case of 𝑇 ≠ 0 the equation (20) can be 

solved numerically. 

We can return to the case 𝑛# ≤ 2 and include the interaction between bosons on cite 

U, but this can be done only numerically, for example in [26] the maximal number 

of bosons on-site was 𝑁95( = 5 and they used the method of exact diagonalization 

to obtain the values for ground state energy for different values of model parameters. 

 

Entropy for the case of hard-core bosons approximation. 

 

The known relation for Gibb’s entropy for the grand canonical ensemble Ω =

Ω(T, µ, tF, 𝜑) is  

𝑆 = −
𝜕Ω
𝜕𝑇 																																																																														(24) 

where Ω can be written as (14). Thus, for entropy we can write:  

𝑆 = −
𝜕(𝑁𝑡F𝜑G)

𝜕𝑇 + 𝑁 ∂[ln�𝑒
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And 
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⎞
			(25) 

And (25) is the final relation for entropy as functions 𝑆 = 𝑆(𝑇, 𝜇, 𝑡F, 𝜑). 

So, now we have to solve equation (20) numerically, which can be written in form: 

2
𝑡F

=

exp�− 1𝑇 ¤−
𝜇
2 + �

𝜇G
4 + 𝑡FG𝜑G¥� − exp¤−

1
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𝜇
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Or, after some simplifications: 

y
𝜇G

𝑡FG
+ 4𝜑G =

¤𝑒
G
V
[Z

$

\ )4%
$]$ − 1¥

¤𝑒
G
V
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$

\ )4%
$]$ + 1¥

																																																			(26) 

 

 to find the value of order parameter for the given values of 𝑇, 𝜇, 𝑡F.  Knowing this 

value of 𝜑 we can find the entropy per site of the Bose-Hubbard model.  

 

Results. 



In this section, we present the results of the solution of the equation for the order 

parameter (26) and related dependencies of Gibb’s entropy using (25). We took the 

value of boson hopping as 𝑡F = 1  so all other variables are normalized relative to 

this value.  The first part is the dependence of order parameter and entropy from 

chemical potential of bosons for different temperatures: 

  

  

  



 

Here one can see that for non-zero values of order parameter (this corresponds to 

the existence of Bose-Einstein condensate), the entropy line has a discontinuity in 

slope which is related to the phase transition from normal to superfluid phase in 

the system.  With increasing temperature, we notice a reduction in the region of 

existence of the BE condensate, and with further increasing of temperature the SF 

phase disappears. 

  

  

The next part of the results is related to dependence of the order parameter and 

entropy on temperature for a given chemical potential of bosons. 

  



  

  

 

Here we also can see that for non-zero values of order parameter, the entropy line 

has a discontinuity in slope (this is more obvious for small values of chemical po-

tential) and with increasing of temperature, we notice a reduction of the region of 

existence of the BE condensate.  

 

3. Ising Hamiltonian Neural Network 

A network of neurons can be described by the Ising model, borrowed from condensed 

matter physics, which is written in terms of the following Hamiltonian: 

𝐻 = −$𝐽"@𝜎"𝜎@ −	$ℎ"𝜎"
"",@

																																																																		(1) 



where 𝜎" is spin with possible orientations (up, 𝜎" = 1 and down 𝜎" = −1),  ℎ" is 

external magnetic field, and 𝐽"@ 	is pairwise coupling between spins. Figure 1 shows a 

depiction of this form of the Ising model with different values of magnetic field on 

every site, as well as possible pair correlations between all sites. It can be also de-

scribed as 1D spin chain with periodic boundary and fully pairwise interaction. In 

terms of biological neurons, the spin can be re-interpreted as the “on” or “off” state 

of neurons where the “on” state is when the neuron is emitting an action potential 

(electrochemical pulse). 

 

Fig. 1: Fully connected pairwise Ising model. Each spin can have value equal to -1 

(black) or 1 (white), and can be connected to every other spin with positive (red) 

or negative (blue) value. (figure taken from [1]).  

In the maximum entropy method we describe the Shannon entropy which is written 

as follows: 

𝑆[𝑝] = 	$𝑝(𝑠) logX𝑝(𝑠)\																																																										(2) 



where, 𝑠 are possible configurations of system and 𝑝(𝑠) are probabilities of these 

configurations. It is important to note that these configurations could be on-off 

patterns of firing in neurons or the orientation of spins in a material. More detail 

description of maximum entropy usage for solving inverse Ising model using the co-

niii-3 package is described in the referenced paper [27].  

Here we want to describe using the results obtained from the inverse Ising problem 

to find the thermodynamical variables of the Ising model.  In thermodynamics, 

when we have the values of ℎ" , 𝐽"@ for the model (1) we can build the energy term 

for every possible combination of spins. 

𝐸(𝝈) = 	−$𝐽"@𝜎"𝜎@ −	$ℎ"𝜎"
"",@

							,														𝝈	 = (𝜎&, 𝜎G, … . , 𝜎*)						(3) 

Then, the partition function is a sum over all possible configurations (for 𝑁	sites we 

have 2*	configurations) 

𝑍* =$exp¤−
𝐸(𝜎)
𝑇 ¥																																																									(4)

d

 

(hereafter we use the ‘energy’ form of temperature which is 𝑇 ≡ 𝑘#𝑇). 

The free energy is then then: 

𝐹* = −𝑇𝑙𝑜𝑔(𝑍*)																																																																								(5) 

Now, if we want to calculate the average of some observable variable, we have to 

apply statistical averaging using: 

〈𝐴〉 =
∑ 𝐴d exp B−𝐸(𝜎)𝑇 G

𝑍*
																																																											(6) 

For example, for magnetization per site this gives: 



〈𝑚〉 =
∑ (∑ 𝜎"" )

𝑁d exp B−𝐸(𝜎)𝑇 G

𝑍*
																																																								(7) 

We can also find the so-called Gibbs Entropy (thermodynamical characteristic of 

the system) as a derivative from Free Energy: 

𝑆 = −
𝜕𝐹
𝜕𝑇 = 				 log

(𝑍*) +
𝑇
𝑍*

𝜕𝑍*
𝜕𝑇 = log(𝑍*) −

1
𝑍*𝑇

	$𝐸(𝜎) exp ¤−
𝐸(𝜎)
𝑇 ¥																	(8)

d

 

Results 

We calculated the values for average magnetization and Gibbs Entropy as functions 

of temperature T using the values of magnetic field (H) and pairwise interaction (J) 

obtained from the inverse Ising problem. We used N=4,6,8 for the possible numbers 

of sites in the Inverse Ising Model. This choice can be explained the fact that even 

numbers are more suitable from symmetry considerations and N=2 is too small for 

good reliability of an inverse solution. The value of temperature was taken in units 

of maximal value of inter-site interaction, which is the standard procedure for Ising-

like models. The values of H and J when the inverse Ising problem with the coniii-3 

package are shown in the table below. 

N Mi

n 

H 

Av-

er-

age 

H 

Ma

x H 

Mi

n J 

Av-

er-

age 

J 

Ma

x J 

4 0.0

542

27 

0.1

267

44 

0.2

126

95 

-

0.0

844

96 

0.0

449

78 

0.1

679

57 



6 -

0.0

115

54 

0.1

066

30 

0.2

523

36 

-

0.2

544

83 

0.0

134

32 

0.1

653

46 

8 -

0.0

769

62 

0.0

856

27 

0.2

185

58 

-

0.2

434

08 

0.0

133

98 

0.2

323

34 

 

 

Figures 2 and 3 show the average magnetization and Gibbs Entropy calculated us-

ing Equations 7 and 8, respectively. 

 

Fig. 2: Average magnetization per site as function of temperature (N =4 – blue, 

N=6 – red, N=8 – green). 



 

Fig. 3. Gibbs entropy as function of temperature (N =4 – blue, N=6 – red, N=8 – 

green). 

An additional useful quantity which can characterize the system is the Free Energy 

(in our case for the Ising model defined as in (5)). In the commonly known and one 

of the pilot works in Thermodynamics, [28] Gibbs stated the principle of minimum 

energy: 

1) In an isolated system it is a necessary and sufficient condition that for any 

possible variations in the state of the system, which keeps the energy invariant, the 

variations of entropy shall either vanish or be negative. Maximum Entropy 

Hypothesis. 

2) In an isolated system it is a necessary and sufficient condition that for any 

possible variations in the state of the system, which do not alter its entropy, the 

variations of its energy shall either vanish or be positive.  Minimum Energy 

Hypothesis.  

Therefore, it is known that in the closed system, as in the Ising model or neuron 

network, the state with the maximum entropy will correspond to the state of the 



minimal energy. To illustrate this, we can calculate the Free Energy of Ising Model 

as a function of temperature (Figure 4). 

 

Fig. 4. Free energy as function of temperature (N =4 – blue, N=6 – red, N=8 – 

green). 

When we compare Figures 4 and 3, one can notice that the maximization of en-

tropy corresponds to minimization of the function of energy. Moreover, when the 

entropy becomes constant, we see a tendency to approach the minimum of energy 

at this given temperature. 

In order to see if our results are correct, we can compare the obtained graphs for 

magnetization and Entropy to some literature results (Figure 5).  As one can see, 

our results are in good correspondence with results obtained for more complicated 

systems. 



 

 

 

Fig. 5: Average magnetization per site (left) taken from [29] and Entropy (right) 

taken from [30] 

 

4. Discussion 

Identity of the Inversed Ising problem and the Restricted Boltzmann 

Machine 

Here we show that the RBM can be simplified to an Ising model. The general de-

scription of the Restricted Boltzmann Machine with visible 𝑣" , hidden ℎ" units, 

bias offsets and matrix of weights (𝛼" , 𝑏" ,𝑊"@) has the energy which can be written 

as: 

𝐸(𝑣, ℎ) =$𝑎"𝑣" +$𝑏@ℎ@ +$𝑊",@𝑣"ℎ@
",@

9

@+&

?

"+&

																																											(9) 

As one can see, this relation is very similar to the description of the Ising model if 

we assume that the visible and hidden units are equivalent (let’s mark them 𝑣" =

ℎ" = 𝑠"). Then, taking the opposite sign to the weights, we can rewrite (9) as 

𝐸(𝑠) = −$𝑎"𝑠" −	$𝑊",@𝑠"
",@

𝑠@

*

"+&

																																											(10) 



Now it is easy to see that this is the exact relation for energy of the Ising Model in 

the form (1) when we denote spins (+1 or -1) as visible/hidden units. 

Restricted Boltzmann Machine uses the principle of maximum Entropy (search of 

minimum of cost function which is minus Entropy) to the find the optimal set of 

coefficients 𝑎" , 𝑏" ,𝑊"@ in (9). Inversed Ising problem uses the principle of maximum 

Entropy (written as (2)) to find the find the optimal set of magnetic field ℎ" and 

interaction 𝐽"@ from (1), and these models are identical when we consider possible 

values of hidden/visible units in RBM as values of spins in the Inversed Ising prob-

lem, which should be equal to +1 or -1.  

 

Conclusions 

Taking in the general method of maximum entropy as the optimization function of 

neural networks, we can state that we can construct the Restricted Boltzmann Ma-

chine which will correspond to a real physical system. The optimization problem 

provided using known methods for RBM will give us the optimal parameters for its 

different possible physical representations. We have validated the approach by com-

parison of results for fundamental thermodynamical quantities from the Ising Ham-

iltonian description of a neural network (a simplified RBM) to the literature. This 

approach can be used for investigations into fundamental quantum physics (e.g. for 

different topological states [31]), as well as for biological systems. For example, 

Ising models have been used to describe the correlated spiking activity of 

populations of neurons in the retina [32], or for description of amino acid 

interactions in proteins subject to constraints pertaining to the mean numbers of 

various types of equilibrium contacts for a given sequence or a set of sequences [33].  
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